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Abstract 

‘me deprtndence of the TEVATRON dynamic aperture on the 
3ystrmatic high field multi.pole errors of the bending magnets is 
studied using a distortion function technique including second order 
effects In perturbation theory. The results are in good agreement 
with t-r-arl;iny studies. It cf%n be concluded that the dynamic aperture 
of the TEVATR9.N is qiven by the break off of the guide field for a 
large distance from the magnets center. There is no "accidental" 
builcl up of single driving terms due to unfortunate choice of the 
pha 9 r .-tdvsn c: e s per FODO cell. It is expected that a somewhat 
~.moofIhrr curve ~:,f the qulde field, as a function of the distance from 
Yhe cetnt~er wc!uI d impr,&e the dynamic aperture. A detailed discussion 
and derivation of distortion functions is given in the appendix. 



!. . Introduction __- 

The desi~gn of I;he superconducting dipole magnet is one of the 
crncial aspects of a large future hadron collider. The magnets costs 
- a slgniflcant part of the total costs of such a project /SSCR4/- 
iirpe!-,d st.ronqly on the magnet aperture and on the required accuracy 
of the magnet manufacturing and assembly. 

T&e 38trte parameters are very important for beam dynamics. The 
tuiaqtie-t aperture requirement is determined by the beam size *at 
injection, the linear lattice design, and an operational need for 
free aperture to allow for injection errors <and orbit distortions, 
eset-~trial for commissioning and optimizing the machine performance. 
‘rti* Mh2qnet.f. imperfections are determining factors for the beam 
-tability and the dynamic aperture. . . . 

At-1 opt.imum magnet desiyn implies that, the physical aperture of 
1Ihe tnachlne is nearly identical to the dynamic aperture. Otherwise, 
maqn~et aperture Is wasted if it cannot be used by the beam. Magnet 
.:iccuracy is .3 wasted rif ort. if t.he dynamic aperture can not be used 
due to physical aperture restrictions. 

In existing mchines, the problem of matching the magnet design 
as wei, as possible to the beam dynamics requirements has been 
<ivoided by applying a rert.ain saf et,y factor. One wants to avoid 
these extra costs buildinq a large fut.ure machine. 

The field qua1 ity of a superconducting m.?gnet is determined by 
‘p+?rsiSt.ent. currents effects mainly at, injection energy, the accuracy 
m? :merh;lnical stab-i1 i t;y ~-if conductor placement, and by the desiqn 
iI, f the conductor arranqement . There is a distinction between 
desiqned and random field errors _ We will concentrate on the 
syst.ematic multipole errors, the sum of designed and averaqe random 
t?r‘z~ors in this report. 

The aim of this study is to reveal how detnils of the systematic 
guide field errors are related to the dynamic aperture and the beam 
dynamics. 

‘The reasc~n why the TEVATHON has been chosen as a test lattice is 
;qluite cbvious . The TEVATRON i,s the prototype of superconductinq 
synchrotrons. Tn many aspects i% is very similar to any future large 
machine. 

The well tested t.001 for such investigations are tracking 
calculations usinq conventional kick codes. For the TEVATRON, such 
c~slciil-ttiiins were performed in the past /WIL83/, /GEL831 and have 
ie;” r;ompared with the tnul t ipole structure of the TEVATRON dipoles. 

:: i 1 t, i 5 very difficult to relate the rescllts of t,rackinq 
ca:cuiations with details of the magnet structure. In order t,o make 
sure not to be misled by accidental coincidences one has to perform 



,a l,il-qf! number of tracking runs changing many parameters 
svstematically. This is very costly ,time consuming, and after all, 
does not guarantee success. 

Analytic methods are therefore a very desirable complement to 
tracking cal~culations. For the TEXATRON first attempts were made 
/WILS3/ using Moser transformations /MOS55/ to obtain the nonlinear 
distortions of phase space trajectories as a perturbation expansion. 
Recently, the lowest order contributions to these distortions have 
been introduced as 'distortion functions' /COL84/. We will use this 
expression in this report for nonlinear phase space distortions 
expanded to any order in perturbation theory. 

The basic idea to obtain phase space distortions as a result of 
a canonical transformation is as follows: 

n~ie nonlinedr~ dynamics is described by a nonlinear hamiltonian, 
which is d product of the nonlinear field coefficients and powers of 
the particle distance from the equilibrium orbit. The hamiltonian 
1: It-1 -1 be ,j e r: cm, p (7 3 e d I I? t. 0 fast oscillating (nonresonant) terms, 
c!onstant (deruninql terms ,and slowly varying (resonant) terms. The 
constant and slowly varying terms dominate the particle motion. The 
fast asclllatit~q terms are expected to cancel over many revolutions 
in t.he machine and can be treated as a distortion. Resonant terms, 
however, can be avoided by a careful choice of the linear machine 
tunes. If one finds a coordinate transformation into a new 
hamiltonian system where the new hamiltonian contains only constant 
terms for which the solution of the equations of motion is trivial, 
the whole nonlinear effect is described by the coordinate 
transformation back into the old system. The distortion functions 
i.i.-,ed here acre a perturbation expansion up to 2nd order of this 
transformation. 

'Though the concept of successive canonical transformations is 
well known and has been often described in the literature, explicit 
expressions for two degrees of freedom for any multipole order and 
for higher orders in the perturbation expansion are not easily 
tlound. Therefore details of the analytical model used here and the 
formulae on which the study iS based are derived and presented in 
the appendices. 

The numerical results presented in this report are obtained from 
the computer code CANOL /CANaS/ which calculates driving terms, 
distortion functions (up to second order perturbation theory incl. 
ter-eis up to 24-mole) and resultinq phase space trajectories. 

The. report is structured in the fallowing way: 
Fiist the i!!odei which dessribes the TEXATRON will be presented. 

'The lnalysis is based on this model. 
In the following section application of the ;?ha 3 e Sp’aCe 

~dist.c~rtlotl concept. t-0 the TEXATRON model will be ~presented and 
discussed. 



‘Tien i~umericsl results are shown and the multipole errors and 
me F r i ,n p.2 c t. li r-l the dynamic aperture will be discussed order by 
order. 

The appendices describe details of the formalism. 

2. A Model f-or the TEXATRON 

The ,ItMlytiC method is quite different from tracking 
calculations In t.rackltnq one usually tries to describe the real 
idt.t.itce 4s closely a.9 possible. Because of 
input it is very difficnlt 

the complexity of the 
to obtain a qualitative understandinq of 

tip2 %iiF t,?BlZkitiq results ConlP about. Therefore the traskinq code 
appears as a 'black box'. 

An ;inaiytical method loses its advantage if one proceeds the 
s.ime W?ty . An important .aspect of analytic calculations is that the 
ir~liiliiilatiiiri of Che prohlrm lesds t.ransparently to the final results. 
it is therefore essential to condense the complexity of a lattice 
into a model which contains only the essential features of the 
lattice. 

Tn this sense a simplified model of the TEVATRON is introduced 
which is the basis of the study. 

The TEVATRON consists of six sextants separated by straight 
sections. Each sextant arc is composed by 16 FODO cells. Four dipole 
inaqnet:? i l-6.127m, B-8.2 mr) are in each half cell. The arc is 
completed at the downstream end by 3 additional dipole magnets. The 
regularity of the arc is distorted by two missing dipoles in the 7th 
half cell from the upstream end of the arc. 

Iii the model, nonlinear forces are concentrated in the middle 
of each half cell (or in the bending center .of a qroup of 2 or 3 
,:I i pci 1 e 2. j , Nonlinear forces in quadrupole magnets are neglected. Thus 
the straight sections enter In the 
by a betatron phase advance 

description of the machine only 
and different 6 functions in the first 

half cell <and the last 3 dipoles. 
There are two kinds of straiqht sections. This reduces the 

superperiodicity of the TEYATRON to 2: two high p straiqht sections 
with a maximum 13 of = 250m and four normal straights with p-15Om. 
However the phase advance was designed to be the same for each 
:jtraiqht section. Neglecting the difference in the B-functions over 
the first and last group of 
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fig 2.1 TEVATRON Lattice Model with Linear Lattice Functions 



dipoles in the arc for the high p and normal straight section, we 
have restored the sixfold symmetry. This is not only a large 
reduct.lon of complexity without sacrificing much lattice 
InformatIon, but it also reduces the computing effort by a factor of 
36. 

The chromaticlty correcting sextupoles are placed next to the 
quadrupole magnets in the real machine. In order to reduce the 
number of nonlinear kicks and the computing time, they have been 
moved to the center of the half cell in the model. The sextupole 
strengths have been scaled with 

(f3.y2 for terms-x3 and with $x112 ‘8, for terms-x.y2 

which means t.he only error in doing so arises from neglecting the 
phase advance between the act.ual sextupole position and the middle 
of a half cell C-17”). This is not a more severe approximation than 
concentrating the nonlinear kicks of the dipole magnets. 

In the real machine some further minor distortions of 
supersymmetry are present which are neglected. 

The multipole errors used in the model are the average of the 
measurements made for each individual TEVATRON dipole /HAN79/. The 
numbers are listed in table 2.1. 

It should be mentioned at this point that it is not expected 
t.hat. t.he results of this study will quantitatively agree with 
measurements made at the real machine or with simulations based on 
the measurements of magnet errors. However it is expected that the 
qualitative results reflect the coherence of basic lattice 
paramet.ers, magnet properties and beam dynamics. 

'The model lattice and basic linear lattice functions are shown 
in fig 2.1. 

TABLE 2.1 
---------------_----____________________------,--------------------- 

Average Multipole Components Measured at-4 inch 
relative field errors in units of 10 

normal coefficients bk skew coefficients a k 
6-pole 0.99 0.38 
R-pole -.27 -.07 

lo-pole -.76 -.07 
12-pole -.05 -.lO 
14-pole 6.69 0.15 
16-pole 0.02 0.25 
l&pole -15.69 -.73 
20-pole 0.01 0.42 



&.%ase Space DiLztortionz in the TWATRIJ 

The difficulties of using the concept of isolated resonance 
driving terms for a real machine like the TEVATRON are well known: 
Evaluation of driving terms for realistic cases very often results 
In a large number of equally important terms rather than one 
dominant one. Furthermore, a driving term is just one term in a 
fourier series of a component of the nonlinear field which dominates 
the rest of the series only if the distance to the resonance is 
close enough. This, however, is always avoided in real machine. 
Therefore driving terms or widths of isolated resonances calculated 
for a real machine are only a relative measure of the importance of 
.a crrtsln component of the nonlinear field. 

Therefore it Is more advantageous to use the phase space 
diztnrtionz 95 such a measure. First of all, they contain all 
harmonics of a certain component of the nonlinear force. If the 
totai dlzt.ort.ion is small, the lowest order distortion functions are 
a zufficiently accurate description of the nonlinear motion. Near 
the dynamic apert.ure t.he lowest. order distortion function concept 
breaks down because distortions become very large and many higher 
orders in the perturbation expansion contribute. But even in this 
situation distortion functions are useful. The strongest terms of 
the distortions at the dynamic aperture are those terms which ought 
to be retained as dominant terms in the hamiltonian. An analysis of 
the phase space distortions therefore provides an excellent 
criterion for the selection of driving terms. Moreover the betatron 
amplitudes for which ,the distortion function concept obviously 
breaks down agree very well with the dynamic aperture obtained from 
the hamiltoni~an procedure having chosen the "right" driving terms. 
(This is not very surprising after a close look at the mathematics 
which determines the unstable fixed points and which determines on 
the other hand the amplitudes beyond which the distortion functions 
become unphysical (see below).) 

If one is not interested in details of phase space trajectories 
but only in which are the dominant terms and in why are they 
dominant, one can do without the hamiltonian procedure and draw 
conclusions from the distortion functions alone. 

In this sense we are calculating relative distortions SE for 
the betatron amplitudes Remittance or Layranqe invariant) 

of the form: 
ex=x 2 .~+2xx’*a+x’ 2*8 

n-2 m 
GE/C =1+ II "0 

X nmvp 
nmvpJx"J; COS(V@~+)-~+ +m y nmvp) 1 sins(vQx+w?y) 
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'The distortion Is calculated for a certain position in the lattice 
as a function of the betatron phase angle *. The variable J is the 
F'nifn~~at~e int.eq ral invariant ld+*e(*)/2r where E Is the distorted 
emittance. Note that the Invariant phase space area would not change 
Lf the nonlinear forces were switched off adiabatically. It 
corresponds therefore to the radius of a circular linear phase space 
tr-ajectury and will be referred to as the "undistorted" emittance or 
betatr~on amplitude. The integers n+m are the multipole order and 
1 vj +I pi is the ar~der of the nonlinear resonance potentially driven 
by the component. 

A similar formula is given for the distortion in the y-y'-plane. 

To obtain the distortion of the betatron phase cS@ as a function 
of the undistorted amplitude J one has to invert the following 
expression: 

n-2 m -- 

2 J~sin(v(Px-6~x)+~(Yy-S~y)+~ nmv,,)/sinn(vQx+~Qy) 

whet-e 'Y 1s the undisturbed phase. This form of the distortion is the 
same for all orders of the perturbation expansion. The coefficients 
o depend on the linear lattice functions and the multipole 
coefficients and are given in appendix A.(sections A7,8,9) 

'The phase space distortions have been calculated for the test 
lattice presented in the previous section. The tunes have been 
chosen carefully in order to avoid resonance enhancement of the 
distortions. 

Fiq i.1 s,hows a projection of a distorted phase space 
trajectory on the x-x' and y-y' plane for different emittances. The 
undistorted emittances have been chosen to be equal for x and y 
( round beam) . Because the phase phase trajectories in x-x' depend on 
the phase angle in y and vice versa, points with the same phase 
angle in y and x respectively have been chosen. The projection can 
therefore be considered as a cut through the 4 dimensional phase 
f:pace for (approximately) constant vertical betatron phase. 

The distortions include first order effects up to 20-pole and 
secot1d ii r cl e r effects UP to the order n+m=lO (that includes 
Interference of the strong 10-pole and C-pole, l&pole and R-pole, 
14,-pole and lo-pole, 12-pole and 12-pole). The outermost trajectory 
is the trajectory for which the slope of the distorted amplitude SE 

as a function of the undistorted amplitude J is zero. This is 
rxpercte~d to be a trajectory very close to the dynamic aperture. 
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In fig 
shown as a 
aperture is 

3.2 the minimum value of the distorted emittance E(@) is 
function of the undistorted emittance J. The dynamic . . r . . expected to occur When the slope 0s cnis curve 15 zero 

(dashed line). Comparison with tracking calculations ( dotted line) 
using the RACETRACK kick code /wRU84/ shows good agreement with the 
distortion function result. The dash-dotted curve has only first 
order terms which shows that the contribution from the second order 
terms are approximately l/4 of the first order terms. This shows the 
importance of higher order contributions near the dynamic aperture. 
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The nonlinear tune shift as a function of the undistorted 
emittances J +J is shown in fig 3.3a and 3.3b. The tune shift is 
rather linea% ix the range between 0 and 3 II mm mr and it becomes 
strongly nonlinear near the dynamic aperture. 
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4. Detailed Discussion of Multipole Errors Order by Order 

In order to understand the results presented in the preceding 
section, We have to decompose the total distortion into 
~~,~~ntr~butl,~,t~s originating from the different multipole components of 
the nonlinear field. 

A look at the resonance denominator SpeCtrUm (fig 4.1) confirms 
that t,here are only few terms among the distortion functions which 
,are enhanced because they are close to a resonance. This happens for 
the terms with 74 -2Q for which one obtains a resonance enhancement 
of 54. We will se: laxer that the dynamic aperture is not very much 
.affrcted by these terms. Resides this the spectrum looks very well 
balanced with most of the terms near unity. 

We first compare the spectrum of phase space distortions for an 
emittance which corresponds to the beam size at high energy (~=0.2 IT 
mm mc 1 and. the emitt,lnce near the dynamic aperture (e=6 r mm mr). 
(The distortion amplitudes are given by eq. 9.7 in appendix A for 
all terms characterized by n+ms12 and lvlcl~l512 which includes 915 
terms.) As one expects from the above form of the distortion, for 
the stnall amplitudes (fig 4.2 a,b.c) the low order multipoles (6 
poles, S-poles) dominate the distortions which are confined to 
values below 0.2%. Near the acceptance limit (fig4.3a,b,c) only 
14,18 and 20-pole are important. The distortion amplitudes reach 
25%. 

The most important contributions (at least UP to an order 
n+m=lOj are first order terms (fig's 4.2a, 4.3a) for small and large 
arnplitiudes as well. However the second order terms which consist of 
x-ilke terms and y-like terms (see appendix A) are an important 
contribution at t.he large amplitude and cannot be neglected. This 
reflects the fact that the perturbation expansion diverqes near the 
dynamic aperture and many higher orders contribute unless there is a 
dominating lower order term enhanced by a small resonance 
denominator which we can exclude in our case. Fig 4.2b,c and fig 
Q . Iib , c show that the most important 2nd order contributions are 
t.ernls with n+m=lO. They are produced by the interference of the 
strong 18-pole and the 6-pole and the interference of the 14-pole 
with the lo-pole. 
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grouped together. 

Spectrum of Phase Space Distortions for J =J =.2nmm mr. 
First Order Pertubation Theory, same absi&aYas 4.1 

Spectrum of Phase Space Distortions for Jx=Jy=0.2nun mr. 
2nd Order Pertubation Theory, x-like terms 

Spectrum of Phase Space Distortions for Jx=Jy=0.2mm mr. 
2nd Order Pertubation Theory, y-like terms 

Spectrum of Phase Space Distortions for J =J =bnmm mr. 
First Order Perturbation Theory, same absfssg as 4.1 

Spectrum of Phase Space Distortions for J =Jy=6nmm mr. 
2nd Order Perturbation Theory, x-like teras 

Spectrum of Phase Space Distortions for J =Jy=6nmm mr. 
2nd Order Perturbation Theory, y-like teds 
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It is also very. instructive to compare the strongest 
contributions to the distortion from the different multipole 
components and @lot the appropriate distortion as a function of the 
undistorted emlttance , see fig 4.3a,b,c). At emittances below 
i .r mm mr the 

(J,=J 
sextupole c ntributions x are by at least 1 order of 

magnitude larger than any other component. At J=1.5 *mm mr however 
the situation has changed. Above this amplitude 14-pole and lB-pole 
components .are by far the strongest contributions and at the dynamic 
aperture J=5.4smm mr, the l&pole component is almost an order of 
maqnitude larger than any other multipole term. The 12-pole and the 
i6-pole and not-ma1 20 pole are the least important contributions 
whereas the octupole is comparable with the sextupole (fig 4.4a). 

The skew terms (fig 4.4b) are in general smaller than the 
normal terms. This is simply because the skew components of the 
field are smaller than the normal components. An exception is the 
skew 20-pole which becomes almost as strong as the normal 14-pole at 
the dynamic aperture. 

TABLE II 

Strongest Distortion Contribution from Each Multipole, J=Gnmm mr 

1st order normal 1st order skew 
multipole n m v p rel.dist. multipole n m v p rel.dist. 

6 1 2 1 2 .007 6 2 1 2-1 .004 
8 2 222 008 

: 006 
0 3131 .OOl 

10 3 212 10 412-l .OOl 
12 422 2 003 

: 002 091 

12 5131 .002 

:6" 2622 1 6 1-4 
:348 

16 14 2503 53 31 :E 
18 3612 18 27 07 025 
20 small 20 7 3 1-3 :035 

2nd order 2nd order 
nor-ma1 terms n m u u rel.dist. skew terms n m v )1 rel.dist. 

18 5 2 7-2 002 
20 4422 :010 20 5353 006 
22 5 4 7-2 060 
24 4644 1043 

22 2 7 2-5 1025 
24 5 5 5 3 .047 
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fig 4.4a Strongest First Order Contribution to the relative 
distortion as a function of the emittance Jx=J 
from normal multipoles Y 

fig 4.4b Strongest First Order Contribution to the relative 
distortion as a function of the emittance Jx=J 
from a multipoles Y 

fig 4.4c Strongest 2nd Order Contribution to the relative 
distortion as a function of the emittance J,=Jy 
from normal multipoles 
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Table II gives a listing of the strongest contributions to the 
,distClrtion fromleach multipole component and its characteristics. 

There are several factors which cause a particular term to be 
important or dominating: 

* The multipole component which drives the term is large. 

* The resonance denominator is small. 

* The contributions from the different nonlinear elements around 
the ring build up rather than cancel each other. 

* The term is a coupling term with n close to m and drives a 
low order resonance (lvl+l~l smaller n+m, large binominal 
factors). 

* 'The distortiOn phase of that term has to be such that there is 
a pnsitive Interference with other strong terms. 

An important aspect of the design of the magnet and the choice 
of phase advances and tunes should be to avoid the coincidence of 
a11 these factors which can result in an accidental dominance of a 
few terms which can cawe a drastic reduction of the dynamic 
aperture. 

We want to analyze the strongest contribution to the distortion 
under these conditions. 

'The 18-pole component together with the 
describes 

also strong 14-pole 
the break off of the guide field. It is not very 

surprising that this multipole has the largest impact on the dynamic 
aperture 

The r-rsonance denominators of almost all the strong terms considered 
so far ,are not particularly small with the exception of the terms 
with v=7, p= -2 where the enhancement is 54. The strongest l&pole 
term (n=3,m=6,u=l,u=2) is only enhanced by a factor of 1.7 which 
means that the dynamic aperture is not reduced by an unfortunate 
choice of the tunes. 

It is furthermore not surprising that the terms with a large 
binominal factor 

(n+m-l)! 
PC)! (!+ ( !I+ (cy)! (see appendices) 

dr? larqe for the terms which cause a large distortion. 
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Finally we have to consider the build up of the terms as a 
superpositlon of the nonlinear elements in the ring. If one neglects 
the effect of the missing magnets in the structure, one can use the 
formula A13.3 wgich gives the distortion amplitude for a regular 
FOIX structure as a function of the phase advance per cell and the 
number of cells. Assuming @ =@ 
build up factor smaller thanxong. 

one finds for all strong terms a 

Fig. 4.5 shows the build up factor 

ain(~(v+~)mc)/sin((v+~)~c/4), k=16, mc= 68O, v+i.l = 1,...12 

for several phase advances near 68O as a function of the phase 
multiplier (v+u). The TEVATRON phase advance with 68.8" is fairly 
well chosen. The build up of terms could be improved however by 
lowering the phase advance to 67' which corresponds to a machine 
tune of 18.9 instead of 19.4 (neglecting the missing magnets which 
maximally add 0.75 to the built up factor). 

A list of the strongest 18.pole contributions is given in table III. 

TABLE III 

Characteristics of strong 18-pole distortions 
________________--__-------------------------------------~---~---- 

term binominal resonance build up relative distortion 
n m v u factor enhancem. factor &E/E for J=6smm mr 

5 4 3 0 420 
5 4 3-2 280 
5 4 1 2 560 
5 4 1 0 840 
5 4 l-4 114 
3 6 1 2 420 
3 6 1 0 560 
3 6 1-4 168 
3632 140 
3616 28 
7 2 7-2 4 
7250 56 
72 3 0 198 
7 2 1 0 280 

1.18 0.66 0.141 
3.15 0.61 0.100 
1.70 0.66 0.243 
1.54 0.61 0.157 
4.21 0.66 0.121 
1.70 0.66 0.348 
1.54 0.61 0.127 
4.21 0.66 0.301 
1.41 0.79 0.126 
6.37 1.11 0.175 

54.42 0.79 0.227 
2.54 0.79 0.171 
1.19 0.66 0.144 
1.54 0.61 0.184 
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The tt:rtal distortion a3 shown in fig3 3.1 and 3.2 is essentially 
the superposition of these terms with proper distortion phases. 
There are 15 3ifigular distortion contributions larger than 10% which 
result in a total distortion of 16%. This shows that the distortion 
phases are very well distributed for our test lattice. 

The second order terms (fig 4.4C) have to be considered at 
emittances larger than 2.5 nmm mr and compete with the normal 14- 
pole and the skew 20 pole at the dynamic aperture. 

The strongest contribution (6%) from the second order 
pertur-bation theory to the phase space distortions is derived from 
the term n=7.m=4,~=7,y=-2. It is the only important term which is 
enhanced by a small denominator by a factor of 54. It is the result 
of interference between mainly first order 14-pole and &pole terms. 
Without enhancement these terms cause distortion3 smaller than 1%. 

Be3ides this single 14-pole - 8- pole interference, the most 
important second order distortions (2%-5%) come from 18-pole - 6- 
pole interference terms. The strongest (4.7%) is the term 
n=4,m=6,v=4,u=4. It Is enhanced by a factor of 6.09. Interference 
between 18-pole and 6-pole results in about ten times larger phase 
space t~l3tort.ior~3 than the interference of 14-pole and B-pole. 

There are 16 combinations of 1st order sextupole and first order 
18-pole contributing to n=4,m=6,v=4,u=4. It is not very surprising 
to find the strongest 18-pole terms among these contributions. The 
build up of the strongest pair of lrst order terms ( n=l,m=2,v=l,u=2 
+ n=3,m=6,v=3,u=4) as a result of a double sum over the lattice 
elements (eq.Ag.3) is not particularly strong as one verifies 
quickly by checking the denominators in eq A13.5 (which is the 
evaluation of the double sum for a regular lattice). 

We can conclude this section by stating that there are no 
Important accidental enhancements of 
to the distortion function 

particular terms contributing 
due to the choice of tunes or due to 

unfortunate lattice design. Thus there is no accidental reduction of 
the dynamic aperture in the TEZVATRON. 
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5. Conclusions 

me discussion in the previous SeCtiOnS leads to the conclusion 
that the TEYATRON dynamic aperture is essentially given by the break 
off of the magnetic guide field. There are apparently no features of 
the magnet multipole structure which are enhanced by the beam 
dynamics and CBU9+3 surprisingly large effects on the dynamic 
aperture. Moreover, the multipole structure of the magnet is very 
well r-eflectrd by the spectrum of phase space distortions which are 
closely related to the dynamic aperture. The strongest phase space 
distortions at the dynamic aperture are produced by the strong 18- 
pole. That are the multipole components which describe the break- 
d <own of t-he guide field. Interference effects of the strongest 
multipole components among each other are important for the dynamic 
aperture but, at least up to 24-pole effects, are not dominating. 

'The characteristics of the distortion spectrum suggest a 
Jliqhtly different multlpole structure. Because the la-pole is much 
stronqer than 10,12,16 and 20 pole one expects that a somewhat 
9 r,, 0 0 the r kl KY e a k off of the guide field emphasizing a little bit more 
those components. Reducinq the 18 and 14 pole leads to a larger 
dynamic aperture and a more effective use of the available physical 
aperture. This hypothesis will have to be analyzed on the basis of 
magnet design and field calculations. 

The analysis in the previous section is by far incomplete and is 
intended to be a first step. At this stage we are not allowed to 
extend of these qualitative results beyond the machine model used 
for the calculations. The conclusions may even change qualitatively 
for a different lattice design. Thus we cannot not derive yet a 
general rule which applies to all machines and each magnet design. 

It is also clear that as a ;y;Element to investigation of 
systematic multipole errors it is necessary to analyze the 
impact of random multipole errors. 

One major goal of this study was to demonstrate how analytical 
methods can be used to understand tracking results. 

A large amount of future analytic and complementary tracking 
calculations will be necessary to provide the magnet builders with a 
beam dynamics criterion for an optimum magnet design. 
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APPEND=6 

Expansion o6LFbase Space Distortions and the Slowlv Varvinq ___- Hamiltc?Zi~. 

1. Introduction 

In the followinq sections, phase space distortions ('distortion 
functions') and the slowly varying hamiltonian will be expanded in a 
perturbation series. The results are expressed in multipole 
expansion coefficients and linear lattice functions. 

The traditlonal procedure using a generating function mixed in 
a new and an old set. of canonical variable3 as introduced by 
MoseriMOS55/ and applied to accelerator problems by Schoch iSCH57l 
and Hagedorn /HAG57/ is followed. 

In the past, the examination of the slowly varying hamiltonian 
has been emphasized. It has been attempted to parameterize the beam 
dynamic3 by the strength of isolated resonances. Much effort has 
been spent to define and to study the width of nonlinear resonances 
/GUI71,73/. 

In a real accelerator or storage ring however, one tries to 
avoid situations where just one or a few terms of the hamiltonian 
are important. This is accomplished by a careful magnet design and 
the appropriate choice of the working point. 

Therefore in practice, one usually finds many equally important 
components in the hamiltonian rather than one strong term and the 
model of a single isolated resonances fails to describe the beam 
dynamics. 

In such cases, the dynamics may be characterized much better by 
a transformation function of the canonical variables into a new 
system where the hamiltonian is trivial. Tom Collins called this 
transfnr~mation function 'Distortion Functions'lCOL841. Contrary to 
the slowly varying hamiltonian, distortion functions contain all 
harmonics of the nonlinear field distribution around the machine. 

An Important property of the distortion functions is that they 
are given in an expansion in the nonlinear field strength and the 
particle's transverse oscillation amplitude. It is well known that 
the expansion converge3 only as long as the total nonlinear effect 
is small. Near the dynamic aperture, where the nonlinear effects 
become [dominant, the concept of distortion functions has to be used 
with great care. 

Beside3 the traditional method described here, more recently Lie 
.alqebralc methods have been used to derive distortion functions 
/DEE&g/. First appiications to accelerator problems have been made 
:MICRS/ which look very promising. 



, 
27 

J. Hamiltonian Formulation of Particle Motion with Nonlinear Fields _---------I_ 

We start with a linear machine with no distortions and no linear 
coup1 inq. The only forces acting on the particles are linear 
rr5t.orlng forces due to normal magnetic quadrupole and dipole 
fields. The particle dynamics is derived from a linear hamiltonian 
G: 

G +2 2 t 1 y’ 2, kx(s) x2 - ky(s) y2 (2.1) 

Here, x and y are the particle transverse positions with respect 
to the closed orbit; x’ and y’ are the slopes of the trajectories 
which are the canonical momenta if no longitudinal magnetic fields 
are present. The independent variable is the longitudinal position 
on the closed orbit s. The linear restoring forces are represented 
by functions kx y (s). The solutions of the equations of motion I 

aG/ax = -ax’/as ; aG/x’ = ax/as ; x’=ax/as (2.2) 

for x and y as a function of s are given in terms of the linear 
lattice functions B(s) and cc(s) and the phase advances rP(s) for x 
and y plane respectively. 

X = d2ExfJx(9)’ CO3 i@x(S) + a,); y = 12EyByW cos(~y(s)+~y) 

(2.3) 
E 
X.Y 

and GJ 
XrY are constants of motions. 

Sources of nonlinear forces are e.g. sextupole fields for 
chromaticity compensation and field 
dip!lle maqnets, 

imperfections of quadrupole and 
Such nonlinearities contribute to the hamiltonian by 

the lotnqit.udinal component of the vector potential of the nonlinear 
maqnet.ic fiel,ds which is expressed in a multipole expansion in the 
t.ransverse part.icle coordinates x,y with respect to the middle of 
the non1 inear element : 

G= 1 
7 x ,2 ’ ‘2 + k (9)x2 +g x + ky(s)y2 it 1 anm (s) xnym 

nm 
(2.4) 
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Because the magnetic field has to satisfy Maxwells 
equar,ions, the m~ltipole coefficients a,, are related by: 

VB = 0 A a n+2,m + a n ,m+2 = 0 (2.5) 

(ftor the relationship of the a,m with the familiar coefficients an 
and b, see appendix B) 

if the nonlinear fields are small distortions of the linear 
restorinq forces, it is desirable to keep the concept of linear 
lattice functions. In order to express the solutions x(s),y(s) for 
the distorted hamiltonian in terms of the linear lattice functions, 
the 'linear' constants of motion E and $ must vary (variation of 
constants f . If one Inserts the solutions for x and y with varying 
constants In the equation of motion, one obtains a system of 
differential equations for E and Q which is of hamiltonian form 
where $ play the role of a generalized coordinate and E the role of 
the canonically conjugate momentum. The hamiltonian for this system 
contains the nonlinear distortions only. The transformation to the 
new canonical variables E and @ Is a standard procedure in classical 
mechanics (transformation to action and angle variables). 

aEX aH(ex,c ,mx,Q ) am 
H = II anm(s)xnym; as = - ; xc 

aH(eX,e .+x,* ) 

a@X as nm aEx 
(2.6) 

The hamiltonian has to be expressed by the new canonical 
variables c and Ip. It is convenient to change the independent 
variable from s to the machine azimuth ~'3. The hamiltonian then has 
to be multiplied with the scale factor between both variables: 

R = jdsl2n. 
Expressinq the cosine-function in exponential form, one 

obtain& 

H=EC 
nmvp 

The v and 

n 
n-v 

ii 1 

mlllp anm(~) [~+]“91”E”E” eijv(~x(0)+mx)+“(~y(~)+~Y)l 

-_ 
2 2 

(2.7) 

u are lnteyers with " E c -n,-n+2,. . . .n--2.n) 
and u E C -m,-m+2,....m-2,ml 
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2. New Hamiltonian Containins onlv Slowlv Varyinq Terms~ 

It is well !&own /LIA66/ that, in general a nonlinear system is 
nonintegrable arid solution3 expressed by invariants and periodic 
lat.tice functions as in the linear case don't exist. 

solutions of the problem have always to be restricted to two 
extreme cases: 

a) the total impact of the nonlinear fields is small or 

1~) only one or a few components of the nonlinear hamiltonian 
dominates the motion. 

The aim nf the expansion below is to advance as far as possible from 
these extreme cases In the region of interest for accelerators and 
storage rings. 

The advantage of the above formulation of the dynamical system 
Is that it allows one to extract from the complicated hamiltonian 
those terms which are -Important for the particle motion while the 
rest is treated in perturbation expansion. 

We will try to find another set of canonical variables belonging 
to a new hamiltonlan which contains only those 'important' terms. If 
the variation of the hamiltonian terms with the independent variable 
0 is fast compared with the machine period, the effect of such terms 
is expected to cancel over many periods of the particle motion. Only 
the parts of the hamiltonian which vary slowly are expected to be 
important. 

Before we proceed further, we want to factorize the hamiltonian 
2.7 in two factors. One factor is periodic in the the variable 0 
with a period of 2r (ring periodic) and the other is unperiodic. 
This is- done by splitting the phase advances into average and 
fluctuating part: 

m x y(cl) = m x y(O) + O-Q, y (3.1) r I 
where Q are the linear machine tunes. 

XrY 
'Then we define the periodic h~amiltonian functions as: 

h nmvp 
Co) = ii f+j[<lj. anm pj’.pj”. .i(, ~~~(0) + iiy(4 

(3.2) 

The hamiltonian can then be written as 

n m 
hnm,+ e; ey2 

i 
H = 1 e 

(v+~+~-IQ~+ ( vQx+vQy) 0) 

nmvu 
(3.3) 
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We are now &mkfng for a canonical transformation, which removes 
all the parts fkom the hamiltonian 
retain3 only Slowly varying and 

which p;;;; fast with 0 and 
constant . We assume a new 

hamiltonian K which depends on new canonical variables J and Y but 
has a similar form to the old hamiltonian H. 

m 
K= E k 5 z 

nmvp JxJ e 
vYx+pYx+(vQx+~Qy)Q 

I 
nmvu Y 

(3.4) 

The new variables J,Y should differ only by a small relative 
amount from the original ones E,%' because the motion is dominated by 
the linear forces and the nonlinear forces are only distortions 
according to our basic assumption. Thus the canonical transformation 
is the identity transformation plus a small correction ci. Because 
the qener%tlng function removes part3 of the old hamiltonian, the 
most-obvious ansatz for a is to assume it has the 3ame formal 
dependence of the variables as H and K. As a generating function it 
is mixed in old and new canonical variables: 

S(J,,Jy,@x,Cy) = Jx@, + J rP Y,Y 
+ u (Jx, Jy,Q,,@y,@) 

n m 
a(O) = I: unmvv(0) 3: JG 

v@~+~@~+~Q~+"Q~)O 

nmvp 

(3.5) 
The transformation between new and old hamiltonian is always 

K = H + as/a0 (3.6) 
and the transformation between old and new canonical variables is: 

Y = as/a;r 
; EX,y = 

as/am 
XrY 

(3.7) 
XrY x,y 

9. Ferturbation Expansio_n of Old and New Hamiltonian in Mixed 

Canonical variables 

The algorithm described in this section was developed by Moser 
/MOSS5/. Explicit expressions for the hamiltonian up to second order 
and the generating function in first order have been presented by 
Schoch /SCH57/ and HagedornIHAG571. 

We insert our expressions for K and S into equation 3.6 in order 
to determine the functions k and u by expressing the momentum 
variable E by J and the coordinate variable Y by @. Powers of E and 



31 

exponentials of Y must be expanded in a taylor series: 

n II n. m n-2 g n m-2 -- 
z 2 =J2i2 E . E 
x Y 

x.e~y + 2 Jx2 JG .aa/aax + !!J J2J 2 +aa/aay + . . . 
2 XY 

n+n'.-2 m+m' 

ci Z nv' 
2 u I 

n'm'v'p' n m'v'v' Jx2 J 2 e 
i(v'*x+ $@ + (v'Qx+u'Q,)O) 

Y 

n+n'm+m'-2 . 

+i C 
v'@~+M'@~ +(v'Q,+p'Q,)@ 

n'm'v'u' 
"+ a 

J 2 Jy 2 
n'm'v'p' x 

+ . . . . 
(4.1) 

l(vYx+pYy+(vQx+~Qy)~j i(v~x+~my+(vQx+~Qy)O) 
1 au aa 

e = e + vzx+ I.lzy+ . . . I 

= e 
~(~~x+~~y+(vQx+~Qy)~) 

n'-2 m' - - 
+ c n'ua 

2 n'm'v'p' J2 J2e 
I (v+v')(rnx ( 

+Q,O, + (p+pW+Qx)O) 

n'm'v'p' 

+ I: !!!%u 
111. m'-2 i 

J2J2e 
(v+v')(@ x +Q,a) + (u+~')(@+Q,)O 

n'm'v'p' 2 n'm'v'p' 

+ . . . . (4.2) 

These expressions get inserted in the equation 3.6 which relates 
the i11d .ind new hamiltonian to the generating function. 
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aa 

Z i(vQx+uQy)onmvu+ q 
nmvu 

' z ( %mv~- 
( v~,+~*~+( vQx+vQy) 0) 

= 
nmq 

+ iZ 
n'm'v'p' 

v (kn~m"v"~,~an,m.v,~,- hn,m,v,~.an,,m"u"~,,) 

n"m"v"v" 
n'+n"-2 m'+m" 

*s2 J 2 .e 
(v'+~")(~~+Q~O)+(~'+~"~~~~+Q~O) 

'1 

n"m"v"v II 0 n'm'v'u' -h n'm'v'p ,a I4 ,, ,, nmvu ,, 

n"m"v"u" 
n'+n" m'+k-2 

*J2 J 2 .e 

+ . . . . . 
(4.31 

The terms are ordered according to their powers n/2 and m/2 in 
the J and the arguments vrn,&i@ of the exponentials. Because the 
equation holds for any value of the amplitude J or phase @ it is 
true for each summand characterized by nmvp: 

i(vQx+pQy)onmvu + aonmvv/aO = 

k -h +iC nmvu nmvu n'm'v'p' 
n' (kn,,m,,I,,~,,.un,m,v,~,- hn,m,v,~,.an,,m,,v,,)lll) 2 

n"m"v"v" 

i iE m' (k 
n'm'v'p' 2 n ') m " v " 1" 

-u n'm'v'p' .- h 
n’m’u’p’ '0 II 

n m”v”W’ 
) 

n”m”v”l-1” 

+ . . . . (4.4) 
The two sums stem from expanding 

E~,+~ and E Y'$Y 
respectively and will be referred to as x-like and y-like. The eight 
indices of the double sum are related by : 
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lrst sum (x-like): n = n'+n"-2 2nd sum (y-like): n = n'+n" 
m = m'+m" m = m'+m"-2 
v = v'+v" v = v'+v" 
p = p'+p" p = p'+p" 

(4.5) 

At this point, we express the periodic functions h,k,a by their 
fourier coefficients 

hzmvllq = & J dO hnmvP(0) eWiqO (4.6) 

Because the relation between h,k,o must hold for every 0, it is 
true for each sinqle fourier component of h,k and a : 

kq - hq 
aq = nmvp nmvp 

nmvp 
i(vQx+vQx+q) 

iZ ___ (kFl' 11’ v” 4' 
n'm'v'p'q' 2 n”m”v”v 840 n,m.v,~,-h~f~:v,~,o~~,m,,v,,~,,) 

II II II +nmvp I, 

i(vQx+vQy+q) 

iZ m’ 
2 

( k4-q' 4' 
n'm'~v'p'q' n"m"v"v ,,a n'm'v'p' 

.hw' 
n'm'v'p , aq:, n m"v"v" ) 

+ n"m"v"i-I" 
i ( vQx+PQy+4) 

+ . . . . (4.7) 

_. solviinq the equation for k and 0 by 5 Iteration --._. -- 

Now we require that the new hamiltonian K contains only terms 
which vary slowly (resonant terms) or which are constant, thus terms 
with: 
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vQx+pQy + q = small or v=p=q=O (5.1) 

For such terl-ms, the whole right hand side of equation 4.7 must 
vanish and we can chose u to be zero in this case. For all other 
terms we can solve the equation by iteration. We start by inserting 

uq (0) = 0 
nmvu 

(5.2) 

in the equation and obtain in first order 

(I) - hq (I) 
aq nmvu 

nmvp = and kq = hZmvu (5.3) 

i (vQx+vQx+4) "rmrvrPr rrrr 

The index r indicates resonant or constant terms. In the next 
iteration step we obtain : 

n"v' -z __ 2 
hq;q' ,hq' n'v" -- 

nrm;v;ur n"m"v"p" 2 
hq-q' h;:m.,v,,P,, 

a4 
(II) n'm'v'i.l' n'm'v'u' 

= n"m"v"p" 
nmvj.4 i (vQx+vQy+q) (v"Qx+u"Qy+q') 

-Z v h;;&,,u,hq: r r r r n m"v")l"- n'm'v'u' 
hq' 

n"m"v"v" 
II I, II' II +nmvu 

i (vQx+uQy+q) (v"Qx+P"Qy+q') 
(5.4) 

n”v’ 
(II) z __ 2 

hq-4’ 
n;m;v;u; hq' - -.hq-4' n'v" 

= n'm'v'u' n"m"v"v" 2 
hq' n'm'v'(i' n"m"v"p" 

kq 
nmwr n"m"v"pr" i ( v"Qx+p"Qy+q' 1 

+ n'm'v'p' 
?!: h”;q’ 

n m'v'p' rrrr 
h&v,u,,- y h~;~:v'~.h~,m,,v"~,, 

n"m"v"v" i(v"Qx+u"Qy+q' ) 

(5.5) 

If we apply the canonical transformation generated by S 
including all terms up to second order{ quadratic in h), the new 
hamiltonian K contains only constant terms or resonant terms up to 
2nd order. The lowest order oscillating terms are third order terms 
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ion at this point and 
.fficiently accurately 

(cubic in h). We cut the expansion and iterat 
,assume that the particle ,motion is described su 
by t.he terms up $0 2nd order. 

f~. Introduction of a Thin Len_s Approximation 

and Evaluation of the Greens Function 

To evaluate the new hamiltonian and the generating function and 
express them in a closed form in terms of the linear lattice 
functions, we have to carry out an inverse fourier transformation to 
obtain the Greens function for the differential eq.uation 3.6. It is 
convenient for later evaluation on a computer to assume the 
nonlinear forces are acting as thin lenses on the particles. This is 
no restriction on the generality of the result and has the advantage 
of dealing w1t.h sums of terms around the lattice rather than dealing 
wit.h integrals. It is also straight forward to extend the result to 
the general case. 
Thus we write for the multipole coefficients as a function of the 
longitudinal positions i around the lattice: 

a rim(o)) = C aA, 
i 

6(0-Qi) ; aAm = ft 
I 

s+li/2 
ds anm(s) (6.1) 

Pli/2 

The fourier transform of the function h is then : 

hi%vp= iif 
‘- qoi) 

(6.2) 

h 
(6.3) 

In order to carry out the sums over q and q’ to obtain the 
Greens function, we have to evaluate sums of the form: 

+m iqe a e-ia(O-siqn(0)*l cos(lTa) I: e= 
q=-m a+q sin(+a) ; lim: 

O-10 ’ sin(ncc) 

If K Is an integer 01‘ near an integer the term q--cc gets 
excluded: 

(6.4) 

-iaO = -i(O-sign(O)n) e ; lim: 0 (6.5) 
(%O 
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7 Evaluation of the Generatinq Function; First Order Terms - 

We are now able to evaluate the generating function S order by 
order at the azimuth Ok. The zero-th order of S is just the 
identity transformation. The first order terms are given by 
inserting eq. 6.2 into eq.5.4: 

- hq 
S(I)(@ ) = 1 -nmw y + (vQx+vQy+q)~k 

k nmvu i(vQx+vQy+q) x ' 

e i(vmx+~my+(vQx+~Qy)Ok) ei(Ok-Oi) 
c 1 

inmvp 2r.i x ' q i(vQx+pQx+q) 

= c - h;iimvu J;,T e i v(*x++ 
t 

+ p(ay++) 

inmvu 2i xy 

e 
i**sign(Ok- Oi)(vQx+pQy) 

sin ?r(vQ,+uQy) 
for vQ,+pQ, # integer 

sign(Ok-Oi) for vQxtpQy = integer 

(7.1) 

It may appear confusing that integer and no;;;;:::; t;m; arz 
distinguished after resonant terms have been 
qeneratinq function in order to retain them as a driving term in the 
new hamiltonlan. However we excluded only one term in the fourier 
series. All the rest of the terms 5.3 have integer but non vanishing 
denominators and are therefore included in the generating function. 
Now we want return to real numbers and combine terms with the same 
lV+Pl. Then the sum over v extends only over positive numbers the 
while sum over LI extends over positive and negative numbers. We find 
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s(I) (ok) = Z - h;mvv x y 
sin v(@:+@x+ ski~Qx)+p(@l+@ + 5kinQ ) 

inmvpk sin ~(vQx+pQy) 

Ski = sign (ak-Oi) (7.2) 

in order to carry out the transformation between old and new 
coordinates, it is convenient to introduce an amplitude and a phase: 

Sk(I) nmvp= jm ; EC = ; h~mv~cos(v~~~+ski~Qx)+~~~~+~ki~Qy)) 

*kiI) = cos nmvp 

(7.3) 

sin v*x+p@ + 9, k(I) 
(1) 

'k 
= .~C Sk(I) nmvp (7.4) 

nmvp nmvp x y sin T(vQ~+PQ~) 

The same procedure for the 'integer' terms results in: 

xc = C hArnvp 
i 'ki 1 coscv~~t~rn~) ,etc (7.5) 

!!!I 
(1) _ 

'k 1 
nmvp 

S;& J;J; cos(v@x+~@~+ '$$ (7.6) 

5&, E;val~.~tion of the Generatigg Function; Second Order - First Part, 

We are turning now to the second order terms for S. There are 
four parts of second order terms: 
l%ere are t.wo each for 'x-like' terms and 'y-like' terms 
respectively. Thz??rst sum in each group contains the product of a 
'ret-,onant' or 'constant' coefficient h with a 'non resonant' one. 
The second term In each group contains products of 'resonant' and 
'non resonant' terms h as well with a 'non resonant' one. We start 
with the first term: 
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since v;Qx+~~~Qy+ 4-4’ =o (or&) for resonant or constant terms 

vQ,+vQj + q = (v'+~"~Q,+(~'+~")Q~+ q = v"Qx+u"Qx+q' 

qr z q-q' (8.1) 

For constant terms "r'=p'q-q'=o the expression vanishes 
because it has vr ' as a factor so that we have to deal with resonant 
terms only: 

n"v' 
(II)_ 

r hj&,,v,P,h?, 

'kr - ' z 
r r r r n m"v"u" 

nmvp n"m"v"p" 8ir2 

J~J~e~[v~x+~~y+(vQx~Qy)~k) 

XY 
ij n;m;v;v; 

I(v/I~+~;I:+(vGQ~+~;Q~)~~~ v"l~+~"~~+(~"Q~+~"Qy)~' 
'I . e . e 

(8.2) 

1 e 
i(@k-&qr 

* E: 
e-ic&oj,,, 

qr 4' (v"Qx+u"Qy+q' j2 

The sum over 
"rmr"rurqr 

extends over only a few terms. We carry out the sum over q' and find 

n”v’ r hi, hj II Ok-Oj-nsk.+~cotn(v"Qx+u"Q ) 

‘kr 
(II)= 1 1 

n,m;v;v; n"m"v"u 

nmvu n"m"v"u" 
ij n;m;v;b(.qr 

8~ sina(v"Qx+u"Qy) 

Y 
v"~~+~"~~+skj~(v"Qx+~"Qy) 

XY 

. e 
i(v;~~+~;~~+(v;Qx+~;Qy+9r,,,k,i,i 

(8.3) 

In most cases, where there are resonant terms in first order, we 
need not proceed with the perturbation expansion. On the other hand, 
usually we try to avoid isolated resonances driven by first order 
terms by a careful choice of the tunes. Thus we will exclude from 
our considerations situations where the above terms may become 
important. One should mention at this point, that the first sums 
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just evaluated for the generating function vanish for the second 
order hamiltonian coefficients 5.5. Because we would have 

with the restric‘tion v'Q,+u'Qy+q-q'=O, we also have v"Qx+u"Qy+q'=O. 

For such terms however the coefficient o(n"m"v"u"q') in 5.3 is zero. 
Thus there are no contributions to second order hamiltonian 
coefficients k from the first sums. 

9. Evaluation of Generatinq Function Second Order; Second Part 

We move now on to the second sum 5.4. If we insert the 
coefficients hi (6.3) we find for the x-like terms: 

s(II) n'v"hi 
= c z n'm'v'p 'h,,&,..u" c !! i v@~+~+~+(vQ~+vQ~)@~) 

k nmvp n'm'v'u' 8in2 
J2J2e 

*Y 
ij n"m"v")l" 

v'~~+u'~:+(v'Qx+~'Qy)Oi) v"~~+~"l:+(v"Qx+~"Qy'oj) . e - e 

eiokq 
. 

E: . c 
ei(Qi.-B')q' 

4 vQx+vQy+q q' v"Q,+u"Qy+q' (9.1) 
Carrying out the sums over q and q' and combining complex 

numbers to real numbers as before leaves us with: 

S(II), x 
n' v"hl n'm'v'u , h; s/ m ,I v 5) 

. 
,,cos \I" I,;-,;,+," ~~'-@ll+r(v"Qx+~"Q ) 

k txttu~i j 
n 'I m I* v I( v *) 

2 sinr(vQx+~Qy) sinn(v"Qx+p"Qy) 

n'm'v'u' 

(9.2) 
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For the 'y:like' terms, we get a similar result. The symmetry 
bet.ween x- and iy-terms is only ,bl;ken because v but not u is 
restricted to pdsitive integers. results in a factor sign(p) 
for the 'y-like' terms. Besides this, the y-like terms differ from 
the x-like terms only by the factor mu instead of nv and the 
aiIrerent relationship between n,m and n'm',n"m" for x and y like 
terms. 

If we exclude the existence of resonant terms in first order, we 
don't need to exclude any terms in the above sum 9.1 over q'. Thus 
we will have no 

v"+Qxu"Qy=inteqer - terms. 

except constant terms with V"="p=O which vanish because because of 
the factor v*. 

;r?le sum in 9.1 over q however contains second order denominators 
which in general include terms 

vQx+MQy=inteyer. 

Therefore for- each second order resonant term to be retained in the 
h~miltonlan, we keep t.he complementary sum over q in the generating 
function S which has the form: 

s(II), ~ n'V"hA'm'v'u' h&.,, ,,cos v"(~~-~~I+~"~Q~-~~~+~(v"Q~+u"Q ,] k nmvuij 
n"m"v"u" 

2 sinn(v"Qx+u"Qy) 

n’m’v’p’ 

! 

0. -Ok 
L-.- 

n + Ski 
1 

.& ; 
XY 

cos 
( 
vmx+++y(@ +Qi) 

1 Y Y, 

(9.3) 
in the second order generating function. 

We now define the second order coefficient 

ui(II)=x n'v"ht, ,v, ,h$,m,,v,,u,, cos(v"~~~-C~(+~"~~j-~i~+n(~"Qx+~"Qy)) 
nmvu n"m" 

v " P " j 
2 sin n ( v"Q,+p"Q,) 

(9.4) 

c 
,i(I) 

nmvji 
: hi 

nmvp 1 

and see the analogy between first (see 7.2) and second order terms: 
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" " 
s(II) (@k) = z 

i(IIjJ2J2 
~'nrnvp 

~in(v+x+ skinQx)+@;+ly+ skinay)) 

inmu& 
x y sin r(vQx+~Qy) 

(9.5) 
First and second order terms differ only by different 

coefficients U. The dependence on the variables is the same for all 
arsiers. Of course the second order coefficients include higher 
orders n+m than we have in first order. The second order 
coefficients for each lattice point i require a sum over the whole 
lattice starting from i and a sum over all pair of first order terms 
which combine to the second order term under consideration according 
to the rules 4.5. 

We proceed in the same way as fOK the first order terms by 
defining an amplitude and a phase 

Skx,y(II) and mkxry(II) 
nmvv nmvp (9.6) 

for x and y-like terms respectively. 
'The tqeneratinq function up to 2nd order is therefore of the 

form: 

-$(I' 
i ( v*x+@y+Q k(I)) 

S(Ok) = Jx@x+J @ + Z nmvv 
YY nrnvp nmui.l XY 

+ c Skx(I1) J!JT e i (v@x+~* +a kx(II)) 
Y nmw 

nmvi.l nrnuv XY 

+ x Sky(H) i (v@x+~By+Q ky(II)) 
nmup 

nmvu nmvp XY 

+ higher orders (9.7) 

It is interesting to notice that the transformation between new 
and old canonical momenta J and E is essentially a fourier transform 
In the phase angle * with coefficients expressed in a closed form in 
t.erms of the multipole coefficients and the linear lattice 
functions. 

If no resonant terms have to be retained in the hamiltonian, the 
tr,~nsfarmatinn function, e=J+aS/a@ describes the whole effect of the 
nonlinear fields up to the order it is expanded. One can consider it 
as a 'distortion function' . It is a ring periodic function which 
describes the distortion of the beam emittance as a function of the 



42 

unperturbed emittance J and the particle phase @. J is solution of a 
trivial new hamiltonian which contains only constant terms 

nm ; : 
K-Zk ‘ L 

nm nmOOJxJy (9.8) 
The validity of the description of the nonlinear effects by the 

qeneratinq function and a trivial hamiltonian is however restricted 
to the case where the distortions E-J and Y-@ are small, because 
this was an expli~zit demand as we truncated the taylor expansion for 
powers of E and exponential5 of 'PC cq's 4.1, 4.2). 

Nevertheless it is very useful to calculate the generating 
fun c t. i 0 t-1 1 One recognizes which multipole component are important for 
the particle motion and it is easy to relate the strength of the 
Cdlstor;tion with lattice parameters like systematic multipole errors, 
phase advances etc. 

Flq. Al shows as an example the comparison between phase space 
trajectories obtained by tracking (solid lines) and obtained from 
distnt-tlon functions (dashed lines) . The lattice contains just one 
strong sextupole represented by five kicks at a betatron phase 
advance spacing of ~?*=0.01. There is no betatron amplitude in the y- 
plane. The horizontal tune is 0.27. 

If the amplitude doe;;et exceed -t/2 of the maximum.stable 
amplitude represented by outer solld tralectory, tracklnq and 
perturbation theory agree fairly well. There are strong differences 
In the trajectories at the stability limit. However, the outermost 
dashed cturve is also what one can consider as a stability limit for 
dis.tort.ed trajectories. The amplitude distortion E-J starts to 
exceed at this amplitude the increase in the amplitude itself thus 
ac/aJ is zero for this trajectory. This agreement is a very 
surprising and encouraging property of distortion functions. The 
comparison has been repeated for another tune far from a resonance 
Q=O.?R. The result is shown in fig A2. One finds the same kind of 
qualitative agreement between tracking and distortion function. 
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1 

Fig Al Comparison between Tracking and Distortion function 
solid lines are tracking, dashed lines are distortion 

Q = 0.28 ,see text 
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Fig A2 Comparison between Tracking and Distortion Function 
for a Tune of Q=O.38, see text. 
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LO. Evaluation of the Hamiltonian; First order 

We turn no%? to the evaluation of the new slowly varying 
hamiltonian based on equation 5.5 and the hamiltonian coefficients 
liefined in ry. 6.3. According to 5.3, the first order new 
hamiltonian K contains just the resonant and constant parts of the 
old hamiltonian H. We Insert eq.6.2 into equation 3.4 and combine 
again each term with its complex conjugate and find: 

K(I), 1 
71 ' nmvu 

iq 

(10.1) 
The sum over nmvlg extends over resonant terms only. 

As for the generating function, we form an amplitude and a phase 
by: 

. . 
K4(I), 1 

nmvp ; Ic = r 1 h;mvMcos 
nmvp 

-(vQx+pQy+q)Bi) ;etc 

The hamiltonian can then be expressed 
(10.2) 

in closed form: 
nm 

K(I) = z Kq(I) - - 
nmvv 

nmv~ J;J; cos 
c 

q(I) vYx+~~y+(vQx+~Qy+~)@+$,mv,, 1 (10.3) 
If there is only one resonant term nmvp, one usually introduces new 
angle variables 

qx = Yxf v 
@Y = yY+ lJ (10.4) 

which are generated by the generating function: 

F(Ixr@xJyr~y,~~) = ~~mx(+~,o) + ~~e~(*y,~ ; Ix= J 
X; 

Iy= J Y 

(10.5) 

The corresponding hamiltonian W does no longer depend explicitly on 
the independent variable 0 and is therefore constant: 
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+k 
;5 

nmvpJxJy cosbJ~x+p~y+~ (I) ) 
nmvp (10.6) 

Fhase space trajectories J(cp) are given for each value of W by 
inverting W =W(J,e) with respect to J. The separatrix is the orbl'c 
which passes'trouqh the fix points given by aWlaJ=aW/aq=O. 

ulvaluation of the Hamiltonian Second order 

The evaluation of the second order hamiltonian is much like the 
evaluation of the second order generating function. We again insert 
the hamiltonian coefficients from equation 6.3 into the expression 
5.4. We already pointed out in section 8. that there is no 
contribution from the first part of 5.5 which involves products with 
resonant first order coefficients. For the second part, after 
carrying out the sum over q', we obtain : 

K(II), -1 
n'v"hA,m,v, ,hi,tmaf Ia Is JzJz ei(vYx+~Yy+(vQx+~Q+q)B) 

in'm'v'p' jn"m"v"M" 8r2 sin n(v"Qx+p"Qy) x ' 

e 
v+;++vQx+~Qy)Oi) i v"(~?-l~)+~"(~~-)~)+sji~(v"Qx+~"Qy)) 

-e 
( 

(11.1) 
We combine again complex numbers to real numbers and v is 

restricted to positive integers again. The sum over j n'm'v'p' and 
n”m”u”P is the same as in equation 9.3. Thus we can use the second 
order coefficient 0 defined in eq. 9.4 to express the generating 
function and we write the second order hamiltonian: 

n II . ,((II)=-; I i(II) 
llLU nm mw vYx+~Yy+(vQx+~Qy+q)O+v~~+~@‘;-~vQx+~Qy,a, 

vpi 
(11.2) 
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For the y-like terms we have a similar expression which differs 
only by the factor mu in the u-coefficient and by the factor sign(p) 
for the reason winted out in section 9 discussing the generating 
function. For thk hamiltonian too, the second order terms have the 
same form as the= first order term differing only by the coefficient 
h v3 o. refining amplitude and phase the same way as before (see 
eq's 10*2, 7.3, 7.41, we obtain the new hamiltonian containing only 
slowly vsrying terms up to 2nd order In the multipole fields: 

K = -2 #(I) 
nmvu nmvu 

# 
x Y co3 ( 

vYx+"Yy+ ( vQx+pQy+q) o+B$$ ) 

- z Kqx(II) 
nmvp nmvu vYx+~Yy+(vQx+~Qy+~)O+~~~~~) ) 

- I: KqY(II) 
nmvu nmvp XY ( 

v~~+pY~+( vQx+)lQy+g) O+@$;;' ) 

(11.3) 
Note that not all second order terms which appear in the 

generating function are potential driving terms in the second order 
hamiltonian. If the second order 
composed of just one pair 

term in the generating function is 
of first order terms with v=v'+vU,v'=vU 

(same for u), the resonance denominator is cancelled as it has been 
pointed out by L.Michelotti/MICf+S/. ThUS the transformation 
contribution from such terms does not get infinitely large when 
approaching the resonance but remains confined to off resonance 
values. That means for example that in second order perturbation 
expansion scxtupole fields don't excite the 6th integer resonance 
i3+Ilj but excite only the 4th and 2nd integer resonances, 

Figs A?,A4,A5 show as an example the phase space trajectories 
ne,ar the 4thinteger resonance driven in 2nd order by sextupoles. 
Just one oscillation plane in phase space is assumed. The tunes are 
Q=O.255(fiq A31 Q=O.26 (fig A41 
parameters-detekmining the4 phase 

,;.a;, Q=0.27 (fig AS). The other 
trajectories were: B=lOOm, 

O='SOmr,r"=l inch and b .lO = 100. The lines in the figures are the 
perturblatlon theory tr 2 jectories and the dots are the result of 
tracking. 



48 

Close to the resonance, the agreement between tracking and 
theory is almost perfect. The only difference is a small rotation of 
the theoretical trajectories with respect to the tracking result. 
This Is due ti the missing higher order ( than 2) detuninq terms. 
For the tune ;Q=O.26, the agreement is still satisfying. At the 
largest tune disagreements become bigger and the single resonance 
approach starts to break down. 

CRNOL VERSION 2 

~X*RLFA+XP*i3ETRI /MM= 9.61998 

Q = 0.255 

; 

.' _. :: 

. . 

fig A3 Comparison between theoretical phase space trajectories 
and tracking near the sextupole excited 4th integer 
resonance ( Q-0.255, see text) 
Lines: Perturbation Theory 
Dots: Tracking 
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c 

TRN01 VFRSTON 7 I ,,,.-_ ,- .,---.. - 

ChRLFR+XPxBETRI /MM= 13.17346 

-! : 

0 = 0.26 

X/MM= 13.1734 

fig A4 Phase Space Trajecories for a tune of 0.26. 
Lines :perturbation theory 
dots: Tracking 
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CHNUL ‘VEFISLUN Z 

CXxRLFR+XPxBETRI /MM= 16.94446 

--, ,...- i 

~~~~~ 

_. z J- - 
:r’ /.:7 .~ ._,.......*,,_ ~-.. 1: /;j 
ii ;- 

- 
!i I- 

iii 

,: . : 
* 
*. 
‘. .$ f/$ 

Q = 0.27 

X/MM= 16.9444~ 

fig A5 Phase Space Trajecories for a tune of 0.27. 
Lines :perturbation theory 
dots: Tracking 
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12. Third and Htgher Order Terms 

It is 'very straight forward but a little tiresome to extend the 
expansion to higher than 2 orders. Higher order Taylor expansion 
terms have to be 
equation 4.7 has 

i;;luEzd in equation 4.3 and the iteration of 
continued until all terms up to the 

particular order are included in equations 5.4 and 5.5. The 
procedures to obtain the generating function and the hamiltonian are 
the same ,as before. We will not bore the reader by repeating it 
again and give the result for the third order generating function 
instead: 
I tn third order, we have three different terms which we will 
characterize by xy-like, xx-like and yy-like. They differ by an 
integer factor f. As the two second order terms they differ by 
relatiotnshlp between the indices of the first order terms they are 
cr-eated from and the indices of the third order term. The 
relationships are 

xy-like xx-like yy-like 
n=n' +n"+n' ' -2 n=n'+n"+n"-4 n=n'+n"+n" 
m=m'+m"+m"-2 m=m'+m"+m" m=m'+m"+m"-4 
v=v'+v"+v' ' v=v n +v,"+v, ' v=v'+v"+V ' 
v=p'+p"+p' ' p=p'+M"+).l' ' p=p,+p"+p' 1 (12.1) 

The Integer factors (which are nv for the x-like 2nd order terms 
and mv for the y-like 2nd order terms) are far more complicated for 
the third order terms: 

xy-term: f XY 
= n'(v-v')(m-m')u".tm'(~-p'J(n-n'jv"-n'm'v*p" 

xx-term: f,,= n'(v-v')(n-n')v"-n'(n'-2)v"u" 

py-term: f 
YY 

= m'(u-~')(m-m')~"-m'(m-2)uU~" 
(12.2) 

The third order generating function evaluated at position p in 
the lattice then has the form: 
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ovw(III)~ 1 Y 
nrnvp - nsmlv$Pt 

n"m"v'%" 
n"m"v"u" 

Z h;<m'v<p. e 

i(v'~~+~'~~+spi~(v'Qx+~'Qy)) 

I sin 71 (vQx+~Qy) 

1 h;,cm.'U"p,, 

ei(v"(P~-mi)+~"(l:-~:)cSji~(v'~Qx+~"Qy)) 

j sin x (v"Q,+p"Q,) 

i v”($~-*~)+~” ( xx 
ki 

C h~~.m~~v,,p,r e 

(my-my)+skieJ ' ‘Q,+P’ ‘Qy’) 

k sin T (v"Q,+P"Q,) (12.3) 

The most remarkable and important aspect of this result is that 
the sum over k does not depend on the index j but on the index i. 
That means that for the third order expressions we don't have to 
carry out a triple sum but two double sums. The same is expected for 
any higher order. Therefore it is not impossible to evaluate the 
distortion function or the hamiltonian for higher orders 
per-turbatlon expansion. If there is a fixed maximum resonance number 
v+p up to which the terms in each perturbation step are calculated, 
the computing time increases only linearly with the expansion order. 

13. The Case of a Simple Reqular Lattice 

If the lattice consists of a regular FODO cell structurEfwith 
systematic multipole errors of the dipole magnets and an 
insertion with no nonlinear fields, the driving terms and the 
diatortlon f~unction can be expressed In terms of the phase advance 
per FODO cell. This can be done for any distribution of nonlinear 
field in the FODO cell. As an example the result for the case with 
just. t.wo nonlinear kicks in the middle of each half cell is 
presented. The phase advance per FODO cell will be denoted by Ip and 
the phase advance between two nonlinear kicks is @, or ed For a 



focusing or a defocus ing quadrupole in between respectively. 
Horizontal and vertical ,phase advances and lattice functions are 
assumed to be the same at the positions of the nonlinear lens. The 
number of the regular cell is denoted by k. The situation is 
sketched in fig x6. 
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Q, nonlin. Qd nonl. Qf nonl. 
kick kick kick Qd 

I--)(-I 

c ad -+ +- Gf -f 
c 

@C 

+ 

Fig. A6 Schematic view of Regular Cell structure 

For this case the sum 7.3 for the first order generating 
function or distortion function is: 

V@f+p'md v@f+@d 
2h nmv sin !j(v+u)@c . cos 2 (v+p)@c+ 2 -n(vQx+vQ ) Yl = 

31n(v+p)Bc/2) 

2hnmvp 
u@f+!J'md vmf+Nd 

Es= 
'COS --yi--- 2 -n(uQx+pQ 1 Yj 

sin((u+u)*c/2) 

(13.1) 

VQf +Md 
2 

sLn((v+p)*,/2) 

k+l = -yv+")rnc+ 
VQf +llmd 

2 -n( vQx+~Qy) (13.2) 
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For a quick estimate one can assume @f=+Q. Thepr;m;:;;;de of 
the generating function is than given by the s mp e 

=sl h nmv sin E(v+u)@c 
nmvu = sin((v+p)@c/4) 

(13.3) 

One expects a large contribution to the phase space distortion 
from those terms for which the argument of the sin-function in the 
denminator of 13.3 is equal or close to (2k+l)en (k integer). Then 
Ehe lattice sum results in a factor n for the amplitude S. Note that 
this is always the case for detuning terms v=l.r=O. 

Unfortunately the expressions for the second order coeficients 
are rather complex. We first introduce the abreviations: 

r = v+u; p = II(vQ,+~Q,, ; d = vQ~+)~@~; q = p + d/2 + t-@/2; a=n,m,v,p 

(13.4) 

Reference point for the amplitude of the second order generating 
function S is the first element in the structure. One obtains: 

p, 1 

n'v" ha,ha,,cos(d"/2)cos(d/2) 
a a' a" 2 sin(p) sin(p,") sin(r"mc/2) 

sln($r"Pc-p"-4~ sin(!$(r+r")*c) 

I 

k 2sin(q")sin(2r%c) 

Y+r"QC) 
+ 

sin(i(r-r")@cJ 

1 

+ 
2 sin( 2 sin(y"*c) sin(r@c/2) 

(13.5) 

One recognizes that the build up of second order coefficients 
over the lattice is maximum if : 

(v+u).@,/2 = jn Cj inteqer ) 

(v"+p")@,/2 = jn 

(v+v"+y+p")Cc/2 = jn 

(v-v"+p-p")m,/2 = jn 

The use of these formulae saves an immense amount of computing 
effort. It may be the only way to use the distortion function 
concept for very large accelerators. 
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APPENDIX B 

Multip~ole Coefficients anm 

Multipole coefficients as a result of a measurement are 
usually expressed as the relative 
radius r. 

field error measured at a certain 
The multipole field strenqth in terms of these 

coefficients ak and b k and the bend angle ~3~ is given by 

Zk 0°C bk+iak).(x+iy)k / rk 

In this report , the vector potential A of the magnetic field 
Is expanded in multiploles using coefficients anm : 

horizontal 
vertical longitudinal component 

The coefficients anm are given in terms of the a k and bk: 

m = even, "normal multipole" 

anm 
= _ C-ljm/2 (n+m-l)! b . 30. r -(ntm-1) 

nlm! n+m-1 

m = odd, "skew multipole" 

a nm = 
(_l)(rn-l)/2 (n+m-l)! 

an+m-l 
. 0.3. r -(n+m-1) 

n!m! 
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